
fect of the temperature factor must then be considered just as in a pure gas. It can be 
proposed that for the case of a nonblack wall at emissivities of E w = 0.8-0.9, a correc- 
tion factor equal to 0.5(e w + i) should be introduced on the right side of Eq. (6). 

NOTATION 

p,, h,, mixture density and enthalpy; r, r0, radial coordinate and tube radius; R = 
r/r 0, dimensionless radius; qres, resultant radiation flux volume density; qr, resultant 
radiation flux density; =, absorption coefficient; T, mean mass temperature of mixture; T, = 
T, if T w < T; T, = T w, if T w > T; K, particle mass flow concentration; 10(x) , K0(x) , K1(x), 
11(x) , modified Bessel functions; e, particle cloud emission coefficient; s effective 
beam length; o, Stefan-Boltzmann constant; Bu = ~r0, Buger number. Subscript w, wall. 
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UTILIZATION OF THE K-E TURBULENCE MODEL IN A FREE-CONVECTIVE 

TURBULENT BOUNDARY LAYER 

A. V. Fedotov and Yu. S. Chumakov UDC 532.517.4;536.25 

A free-convective turbulent boundary layer on a vertical isothermal surface 
is examined. The influence of the buoyancy force on the kinetic energy of the 
turbulent fluctuations is analyzed. A modification is proposed for the turbu- 
lence model that takes account of the free-convective flow singularities. 

Modeling turbulence when studying free-convective boundary layers is based mainly on 
the analogy with forced flows[l, 2] without taking account of the influence of the lift 
force on the turbulent characteristics. Experimental papers [3-6] that have recently ap- 
peared and in which the structure of a turbulent free-convective flow is investigated in 
detail permitted substantial refinement of the turbulence model and taking account of the 
singularities of similar flows. 

As the initial equations to describe the free-convective flow around an isothermal ver- 
tical surface, the turbulent boundary-layer equations in a Boussinesq approximation were 
used. Details of the problem formulation can be found in [7]. 

M. I. Kalinin Leningrad Polytechnic Institute. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 55, No. 5, pp. 721-726, November, 1988. Original article submitted June 17, 
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The turbulent viscosity coefficient v T was determined from the formula [i] 

K 2 
vT = c~exp [--2.5/(1 + Re~/50)] --- 

8 
( i )  

To determine the kinetic energy of turbulent fluctuations the appropriate transport 
equation can be used 

OK a [ (  v~ 1 ~ ] ~  u'v' Ou u'T' ( OK~/2 ) ~, OK +v - v+ - < >-- +g~< >--~--2v 
" o--7- oy oy oy (2 )  

Here the x axis is directed along the surface and is parallel to the free-fall acceleration 
g. 

Correlation of the velocity fluctuations <u'v'> when using the Boussinesq hypothesis 
is written as follows: 

au 
--<u'v'> = v ~ .  

Oy (3) 

The correlation <u'T'> that takes account of the lift coefficient in the magnitude of the 
turbulence kinetic energy was determined from the formula [8] 

< u'T' > = c~(qK) 1/2. (4 )  

In  i t s  t u r n ,  t h e  q u a n t i t y  q was found  f rom t h e  s o l u t i o n  o f  t h e  a p p r o p r i a t e  t r a n s p o r t  equa -  
t i o n  [i] 

Oq + ~ _ _  ~ _ - = -  + _ _  

u Ox Oy Oy Prq , ~ + clqvT \ Oy ] C2q--K-q 28 Oql/2 (5) I 

The rate of turbulence kinetic energy dissipation was determined from the following 
equation [I] 

ae +v ..... v+ +ci v~ 
" o-7 0y 09 T y  -k--  - 

8 12 g 
- -  c2 [1 - -  0.3exp (--  Re; )] - T  -]- csc~g~ (qK/ K 

(6) 

The introduction of additional terms in the equations for K and q [see the last term 
in (2) and (5)] permitted taking account of the anisotropy of turbulence near the solid 
surface and the utilization thereby of the zeroth value as the boundary condition for e. 
Consequently, the boundary conditions for K, q and e have the form 

K = 0 ,  q = 0 ,  e = 0  ~ r  y = 0 ,  
(7) 

K - ~ 0 , ' q - ~ 0 ,  e---~O ~r  y -+o o .  

The i n i t i a l  s y s t e m  o f  b o u n d a r y - ! a y e r  e q u a t i o n s  in  c o m b i n a t i o n  w i t h  ( 2 ) ,  ( 5 ) ,  and (6 )  
was a p p r o x i m a t e d  by f i n i t e  d i f f e r e n c e s  o f  s e c o n d - o r d e r  a c c u r a c y .  The d i f f e r e n c e  s y s t e m  o f  
a l g e b r a i c  e q u a t i o n s  o b t a i n e d  was s o l v e d  by t h e  method o f  n o n m o n o to n i c  f a c t o r i z a t i o n  w i t h  
i t e r a t i o n s .  D e t a i l s  o f  t h e  n u m e r i c a l  method can be found  in  [ 9 ] .  The f o l l o w i n g  v a l u e s  
o f  t h e  e m p i r i c a l  c o n s t a n t s  were  u sed  in  t h e  c o m p u t a t i o n :  c~ = 0 . 0 9 ,  Clq = 2 . 8 ,  C2q = 1 . 7 ,  
c l  = 1 . 4 4 ,  c 2 = 1 . 9 2 ,  c 3 = 1 . 4 4 ,  c4 = 0 . 5 ,  Prq = 0 . 9 ,  Pre  = 1 . 3 .  

P r o f i l e s  o f  t h e  q u a n t i t i e s  k = K/Kmax, e = ~/Smax ( c u r v e s  1 and 3) a r e  compared  in  
F i g .  1 w i t h  a n a l o g o u s  p r o f i l e s  o b t a i n e d  in  [1]  ( c u r v e s  2 and 4 ) .  I t  i s  s e e n  t h a t  in  con-  
t r a s t  t o  t h e  r e s u l t s  in  [ 1 ] ,  t h e  nonmo n o to n i c  n a t u r e  o f  t h e  ch an g es  in  k and e in  t h e  domain 
0 .01  ~ y /6  ~ 0 .2  i s  o b s e r v e d  in  t h e  r e s u l t s  r e p r e s e n t e d  in  t h i s  p a p e r .  

It must be noted that as the accuracy Of the convergence of the iteration process di- 
minishes, a solution is obtained with a monotonic change in the quantities k and e, i.e., 
exactly as in [i]. 

The condition 
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Fig. i Fig. 2 

Fig. i. Dependence of k (curves i, 2) and e (curves 3, 4) 
on y/6: i, 3) without taking account of singularities in 
the behavior of <u'T'>; 2, 4) from computed data [i], Gr = 
4.8.10 I~ . 

Fig. 2. Dependence of �9 on qc: i) without taking account 
of singularities in the behavior of <u'T'>; 2) using the 
factor (9); 3) from experimental data [4]: Gr = 1.62-10 I~ . 

was the final criterion for emergence from the iterations in the computations we made, where 
1 < j < N is the number of points in a direction perpendicular to the wall, N is the quanti- 
ty of computational nodes in the layer, i is the number of iterations, and ~ is a certain 
small quantity. 

By using an additional numerical investigation it was established that the results of 
[i] can be duplicated only for ~ ~ 5.10 -2 . As the accuracy of the convergence of the itera- 
tions increases, nonmonotoneity in the behavior of k and e appeared and was conserved even 
in the final solution. A known finite-difference method [i0] was selected in [i] for the 
numerical solution of the system of equations. This method cannot apparently assure the 
necessary accuracy for the solution of similar problems. 

Comparison of the dimensionless tangential friction (see Fig. 2, curve i) and the di- 
mensionless generation of turbulence because of the shear flow p (see Fig. 3, curve i) with 
available experimental data [3, 4] showed that a substantial exaggeration of these quantities 
is observed in the near-wall domain. 

Starting from the results obtained, we assume that the behavior of the free-convective 
turbulent boundary layer near a surface is anomalous. The qualitative analysis performed in 
[ii], where the existence of a domain with negative correlation values <u'T'> near the wall 
is indicated, confirmed this assumption. Moreover, the presence of negative values of the 
quantity <u'T'> in the domain between the surface and the maximum velocity coordinates was 
verified experimentally in [5, 6]. 

Therefore, the contribution of the buoyancy force to the turbulence kinetic energy is 
different near to and far from the wall. In other words, taking account of the Archimedes 
force diminishes the turbulence kinetic energy in the domain between the surface and the 
maximum velocity coordinate and increases it in the external boundary layer domain. 

The singularity noted influences the nature of the turbulent free-convective flow and 
should be taken into account in modeling turbulent processes. It is certainly impossible 
to take account of a similar turbulent flow singularity byusing the turbulence model being 
applied; thus, for instance, the structure of (4) is such that it is generally impossible 
to obtain a negative value of <u'T'>. 

In this paper it is proposed to take into account redistribution of the energy between 
the fluctuating and average motion by using an additional factor in the expression (4): 

I -- I/(aiRi$'), y~ YM, (9) 
A~ = 1, y > y ~ .  
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Fig. 3. Dependence of p on q: 

0 ~_@T~_ 1 .... I , 

~,xL u 

Fig. 4 

I) without taking account of 
singularities in the behavior of <u'T'>; 2) using the factor 
(9); 3) from experimental data [3]; Gr= 5.57.10 l~ 

Fig. 4. Distribution of <u'T~>b in the transverse section 
of a free-convective boundary layer: Gr = 1.62.10 II 

The values of the constants a I and b I were determined as a result of a numerical experiment 
(a I = 50, b I = 1.45). 

Profiles of the quantities z and p in Figs. 2 and 3 (curve 2), obtained with the factor 
(9) taken into account, are compared with experimental results [3, 4]. Application of the 
factor A T results in a monotonic change in K and ~ in the domain 0.01 5 y/6 5 0.2 and sub- 
stantially improves the agreement between the computed and the experimental data in the near- 
wall domain. 

On the basis of the algebraic model of Roddy for stresses in a locally equilibrium ap- 
proximation an analysis is given in [ii] of the behavior of different correlations in a tur- 
bulent free-convective vertical boundary layer, and it is shown that the correlation <u'T'> 
is negative in the domain between the wall and the maximum velocity. However, it is also 
noted in [ii] that the locally equilibrium approximation is too inaccurate near the wall 
and, therefore, the derivation of a negative value of the correlation <u'T'> in this domain 
has an incomplete foundation. 

The complete algebraic model of Roddy was used in this paper in the presence of expul- 
sion forces to determine the stresses [12] 

<.iu}>=K -f-u+ 

+ (1--?)( Pue 32 6u---~-)-k(l--c3v)( G!;e ~- ---~ "k- - ]  2 6i i G ) Sue 

c~v + ( P + 1]j 

�9 , ( Ou.~_ 
K <ugut> O_~T q_(l__c2T) <ulT') Oxz -k~gi Oxt 

(io) 

T '" ) § 
<u~T'> ------ (ii) 

1 (P+G 1) 

The expressions for Pij, Gij, P, G as well as the terms Sij , SiT governing the influ- 
ence of the wall are not presented here because of their awkwardness. Determination of 
these terms and the magnitudes of the constants in this model can be found in [12]. On 
the basis of the solution obtained by using the K-e turbulence model, the system (i0) and 
(ii) was solved. Presented in Fig. 4 is the dependence of the dimensionless correlation 
<u'T'> b = <u'T'>/[U(T W - T=)] on the transverse coordinate. It is seen that this correla- 
tion is negative in the domain between the wall and the maxim1~n velocity coordinate. 

The results obtained in this paper indicate the necessity to take into account the 
singularities of free-convective flow in the construction of numerical models of turbulence, 
especially for the description of the flow in the domain between the wall and the maximum 
velocity coordinate. 
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NOTATION 

a, thermal diffusivity coefficient, e, dimensionless rate of dissipation of the, turbu- 
lent velocity fluctuation kinetic energy;F = u/U, dimensionless longitudinal component of 
the average velocity; U = [gS(T W - T=)x] I/~, velocity scale; Gr, Grasshopf number; g, ac- 
celeration of gravity; K, kinetic energy of the turbulent velocity fluctuations; Kmax, maxi- 
mum value of the kinetic energy of the turbulent velocity fluctuations; k, dimensionless 
kinetic energy of the turbulent velocity fluctuations; Pr, Prandtl number; q = <T'2>, aver- 
age of the temperature fluctuations squared; Re T = K2/(ve), turbulent Reynolds number; Ri T = 
gSIST/ayl/(Su/Sy) 2, Richardson number; T, average temperature; Tw, surface temperature, 
T~, temperature at the outer boundary of the boundary layer; u, v, velocity vector components 
in Cartesian coordinates; x, y, rectangular Cartesian coordinates; YM, maximum thickness; 
8, coefficient of volume expansion; ~, boundary layer thickness; e, rate of dissipation of 
the kinetic energy of the turbulent velocity flucatuations; Emax, maximal value of the rate 
of kinetic energy dissipation of the turbulent velocity fluctuations; v, v T, kinetic viscos- 

t m i/3 2 U t ity coefficient and its turbulent analog; T = -<u v >/(~/xGr ) , dimensionless t rbulen 
friction; p = VT/V(SF/SD) 2, dimensionless turbulence generation due to shear flow; D = 
Y/xGrl/4, Nc = Y/xGr~/s, dimensionless transverse coordinates. 
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